博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Kyoya and Colored Balls(组合数)
阅读量:7103 次
发布时间:2019-06-28

本文共 2301 字,大约阅读时间需要 7 分钟。

Kyoya and Colored Balls
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color i before drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

Input

The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).

The total number of balls doesn't exceed 1000.

Output

A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

Examples
input
3 2 2 1
output
3
input
4 1 2 3 4
output
1680
Note

In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

1 2 1 2 3 1 1 2 2 3 2 1 1 2 3
题意:
有k种颜色,每种颜色对应a[i]个球,球的总数不超过1000
要求第i种颜色的最后一个球,其后面接着的必须是第i+1种颜色的球
问一共有多少种排法 对于每一种颜色的求有当前所剩的总位数sum,当前颜色个数a C(sum - 1, a - 1); 乘上所有的情况就好了; 另外组合数要打表求出; C[i][j] = C[i - 1][j] + C[i - 1][j - 1];杨辉三角的求法; 代码:
#include
#include
#include
#include
#include
#define LL __int64using namespace std;const int MAXN = 1010;const LL MOD = 1000000007;int a[MAXN];LL C[MAXN][MAXN];void db(){ C[0][0] = 1; C[1][0] = 1; C[1][1] = 1; for(int i = 2; i < MAXN; i++){ C[i][0] = C[i][i] = 1; for(int j = 1; j < i; j++){ C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; C[i][j] %= MOD; } }}int main(){ int k; db(); while(~scanf("%d", &k)){ LL sum = 0; for(int i = 1; i <= k; i++){ scanf("%d", a + i); sum += a[i]; } LL ans = 1; for(int i = k; i >= 1; i--){ ans *= C[sum - 1][a[i] - 1]; ans %= MOD; // printf("%d %d %d\n", sum - 1, a[i] - 1, C[sum - 1][a[i] - 1]); sum -= a[i]; } printf("%I64d\n", ans); } return 0;}

 

转载地址:http://nschl.baihongyu.com/

你可能感兴趣的文章
CentOS6.5 安装rabbitmq
查看>>
责任链模式
查看>>
微软官方Windows主题 英国之美 高分辨率的壁纸
查看>>
6.自定义Nagios监控项
查看>>
outlook离线地址薄更新失败:缺少对象
查看>>
基于RHEL 6.5安装Oracle 11g详细教程(4)——安装Oracle前的准备
查看>>
C#打包制作安装程序
查看>>
cpio命令常规用法介绍
查看>>
shell httpd mysql php vsftp
查看>>
我的友情链接
查看>>
我的友情链接
查看>>
ASP 2.0 数据绑定函数Eval()的机制
查看>>
我的友情链接
查看>>
mysql优化
查看>>
使用Docker快速搭建Gitlab
查看>>
workerman运行分析--主进程流程
查看>>
一个简单的例子区分linux shell 正则表达式中的 *,+,?
查看>>
jQuery(三)jQuery事件执行/简单事件/复合事件
查看>>
运行Spark 任务出现的错误
查看>>
我的友情链接
查看>>